Package: blink 1.1.0

Rebecca Steorts

blink: Record Linkage for Empirically Motivated Priors

An implementation of the model in Steorts (2015) <doi:10.1214/15-BA965SI>, which performs Bayesian entity resolution for categorical and text data, for any distance function defined by the user. In addition, the precision and recall are in the package to allow one to compare to any other comparable method such as logistic regression, Bayesian additive regression trees (BART), or random forests. The experiments are reproducible and illustrated using a simple vignette. LICENSE: GPL-3 + file license.

Authors:Rebecca Steorts [aut, cre]

blink_1.1.0.tar.gz
blink_1.1.0.zip(r-4.5)blink_1.1.0.zip(r-4.4)blink_1.1.0.zip(r-4.3)
blink_1.1.0.tgz(r-4.4-any)blink_1.1.0.tgz(r-4.3-any)
blink_1.1.0.tar.gz(r-4.5-noble)blink_1.1.0.tar.gz(r-4.4-noble)
blink_1.1.0.tgz(r-4.4-emscripten)blink_1.1.0.tgz(r-4.3-emscripten)
blink.pdf |blink.html
blink/json (API)

# Install 'blink' in R:
install.packages('blink', repos = c('https://cleanzr.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/cleanzr/blink/issues

Datasets:

On CRAN:

5.71 score 5 stars 1 packages 68 scripts 281 downloads 7 exports 3 dependencies

Last updated 11 months agofrom:7aae7e9dbb. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 05 2024
R-4.5-winNOTENov 05 2024
R-4.5-linuxNOTENov 05 2024
R-4.4-winNOTENov 05 2024
R-4.4-macNOTENov 05 2024
R-4.3-winOKNov 05 2024
R-4.3-macOKNov 05 2024

Exports:check_IDslinkslinks.comparemmsmpmmspairwiserl.gibbs

Dependencies:plyrRcppstringdist

Introduction to blink

Rendered fromintroEBLink.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2020-09-30
Started: 2017-06-20